
Journal of Magnetic Resonance 204 (2010) 248–255
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Optimal control design of pulse shapes as analytic functions

Thomas E. Skinner *, Naum I. Gershenzon
Physics Department, Wright State University, Dayton, OH 45435, USA
a r t i c l e i n f o

Article history:
Received 23 December 2009
Revised 28 February 2010
Available online 6 March 2010

Keywords:
Optimal control theory
OP algorithm
Pulse design
Floquet
Fourier series
Adiabatic pulses
1090-7807/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jmr.2010.03.002

* Corresponding author.
E-mail address: thomas.skinner@wright.edu (T.E. S
a b s t r a c t

Representing NMR pulse shapes by analytic functions is widely employed in procedures for optimizing
performance. Insights concerning pulse dynamics can be applied to the choice of appropriate functions
that target specific performance criteria, focusing the solution search and reducing the space of possible
pulse shapes that must be considered to a manageable level. Optimal control theory can accommodate
significantly larger parameter spaces and has been able to tackle problems of much larger scope than
more traditional optimization methods. However, its numerically generated pulses, as currently con-
structed, do not readily incorporate the capabilities of particular functional forms, and the pulses are
not guaranteed to vary smoothly in time, which can be a problem for faithful implementation on older
hardware. An optimal control methodology is derived for generating pulse shapes as simple parameter-
ized functions. It combines the benefits of analytic and numerical protocols in a single powerful algo-
rithm that both complements and enhances existing optimization strategies.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction such as relaxation and compensation for RF inhomogeneity, en-
A fundamental goal of pulse engineering is optimal pulse per-
formance. The primary impediment to successful pulse optimiza-
tion is the enormous space of possible pulse shapes that must be
considered. One widely employed solution to this difficulty is to
represent pulse waveforms by analytic functions [1–20]. Functions
can be chosen for their suitability to a given problem using physi-
cal intuition and analytical insights, focusing the solution search. In
addition, the space of possible pulse shapes is restricted to partic-
ular pulse families characterized by a relatively small set of
parameters, making the optimization problem more tractable. An
ancillary, but not insignificant, benefit is the smooth variation of
the resulting pulses, enabling implementation with the necessary
fidelity using basic (rather than more sophisticated) NMR hard-
ware. However, this approach effectively scales the problem down
to accommodate the limitations of a given optimization procedure.
Pulse design problems of larger scope requiring more parameters
are simply not accessible.

Another approach is to utilize more efficient optimization to
identify the smaller subset of pulse shapes containing the solution
to a desired problem. We have previously shown that optimal con-
trol theory is a powerful method that can be applied to a wide
range of pulse design problems (see, e.g. [21], and references there-
in). It utilizes an efficiently calculated gradient towards better per-
forming pulse parameters to narrow the solution search. Optimal
control provides the flexibility to introduce important constraints,
ll rights reserved.

kinner).
abling it to obtain solutions for large-scale problems that were
previously deemed to be computationally impractical. Its fast con-
vergence has allowed the optimization of as many as 300,000 inde-
pendent parameters [22]. Thus, restricting the scale of the problem
is less of an issue for optimal control. But insights into the perfor-
mance of its numerically generated pulses are less evident, and the
resulting pulses are not guaranteed to be smooth.

The topic of the present work is a method for incorporating the
benefits of both approaches discussed so far. We derive an optimal
control algorithm to generate pulse shapes expressed as simple
parameterized functions. Examples follow illustrating the capabil-
ities of this optimized parameterization for pulse design, which we
designate as OP and pronounce ‘‘Opie”. The resulting pulses are
guaranteed to have the smooth variation of the underlying
functions.

2. Optimal control algorithm

Optimal control algorithms relevant to the present treatment
have been described previously [22–25], with specific details re-
lated to incorporating relaxation and phase slope given in
[26,27]. A synopsis of the standard optimal control formulation
underlying the new approach is provided in the next section. We
then derive the modifications necessary to optimize the perfor-
mance of pulses constrained to be analytic functions.

2.1. Standard formulation

Optimal control theory is a generalization (e.g. [28]) of the clas-
sical Euler–Lagrange formalism, with the Lagrangian replaced by a
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cost function L chosen to impose some desired measure of perfor-
mance on the state variable for the system of interest. Given a
dynamical equation for the time evolution of state xðtÞ that de-
pends on controls uðtÞ, the goal is to find the path or trajectory
xoptðtÞ producing an extremal value of the functional

J½x� ¼
Z tf

t0

L ½ t; xðtÞ;uðtÞ �dt ð1Þ

over a specified time interval ½ t0; tf �. Often, L is chosen with no ex-
plicit dependence on x or t. A final cost term U½xðtf Þ� evaluated at
the end of the time interval is also generally included.

Additional constraints on the optimizing curve, of the form
gðxÞ ¼ c, can be included in the formalism by the standard method
of introducing Lagrange multipliers kj for each constraint equation
gj, which defines the ‘‘hamiltonian” for the system in terms of the
inner product between k and g (components kj and gj, respectively)
as

h ¼ L� hkjgi: ð2Þ

The necessary condition for an optimizing trajectory is that the
variation dJ at all points of the path be equal to zero. Imposing the
system evolution equation as a constraint in the form _xðtÞ ¼ gðxðtÞÞ
results in the following requirements to optimize the cost, given an
initial starting point x0 for the trajectory:

_x ¼ @h
@k
; xðt0Þ ¼ x0 ð3Þ

_k ¼ � @h
@x
; kðtf Þ ¼ @U=@x ð4Þ

@h
@u
¼ 0 ð5Þ

If @h=@u is not equal to zero, it represents a gradient giving the pro-
portional adjustment to make in the controls for a more optimal
solution.

To be more specific, consider a system of noninteracting spins
evolving according to the Bloch equation. The state variable is
the magnetization MðtÞ. In units of angular frequency (radians/s),
the effective RF field in the rotating frame is

xeðtÞ ¼ xAMðtÞ ½cos /ðtÞ x̂þ sin /ðtÞ ŷ � þ ½x3ðtÞ þ dx � ẑ
¼ x1ðtÞ x̂þx2ðtÞ ŷ þ ½x3ðtÞ þ dx � ẑ ð6Þ

which encompasses any desired modulation of the amplitude xAM

and phase / of the pulse, or, equivalently, the real and imaginary
components x1;x2, and frequency modulation x3 with respect to
chemical-shift dx. The inner product of Eq. (2) is the dot product
between the vectors k and g ¼ xe �M, giving

h ¼ L� k � ðxe �MÞ ¼ L�xe � ðM � kÞ ð7Þ

The controls uðtÞ in the standard formulation of optimal control
theory are thus the RF pulses xðtÞ applied to the sample at each
time t. At each pulse time increment tj ¼ jDt, there is an indepen-
dent control xiðtjÞ. The gradient GiðtjÞ giving the adjustment to
make in the control xiðtjÞ at each iteration of the algorithm is

GiðtjÞ ¼ @h=@xiðtjÞ ¼ @L=@xiðtjÞ � ½MðtjÞ � kðtjÞ �i: ð8Þ

Often, the only performance measure of interest is the final cost,
and the ‘‘running” cost L is set equal to zero.

2.2. The OP variation

If we now represent each pulse component xi by a given func-
tion fi parameterized by constants ci

n (designating the nth constant
comprising a vector ci), then

xiðtÞ ¼ fiðci; tÞ; ð9Þ
and the controls become the ci
n. Defining operations with the vector

ci as operations with each of the ci
n, Eq. (5) for the gradient Gi with

components Gi
n becomes

@h
@ci
¼ Gi ¼ @h

@xi
� @xi

@ci
¼
X

j

@h=@xiðtjÞ@xiðtjÞ=@ci

¼
X

j

GiðtjÞ@xiðtjÞ=@ci ð10Þ

Thus, the new gradient Gi
n for adjusting the parameter ci

n is effec-
tively a time average of the gradients GiðtjÞ from the standard for-
mulation of the NMR optimal control problem for the xiðtjÞ (Eq.
(8)), weighted by the @xiðtjÞ=@ci

n derived from the dependence of
xi on ci

n at each time tj. The rest of the OP algorithm proceeds
according to standard gradient ascent methods, as described previ-
ously [23,29]:

(i) Choose an initial RF sequence xiðtÞ ¼ fiðci; tÞ.
(ii) Evolve M forward in time from the initial state xðt0Þ.

(iii) Evolve k backwards in time from the target state kðtf Þ.
(iv) ci ! ci þ �Gi.
(v) xiðtÞ ¼ fiðci þ �Gi; tÞ.

(vi) Repeat steps (ii)–(iv) until a desired convergence of U is
reached.

In addition, if the optimization is performed over a range of
chemical-shift offsets and/or variations in the peak RF calibration,
the gradient Gi is averaged over the entire range. If fi is linear in the
sense that fiðci þ �Gi; tÞ ¼ fiðci; tÞ þ �fiðGi; tÞ, then xiðtÞ ! xiðtÞþ
�fiðGi; tÞ in step (v), which can be compared to the standard formu-
lation xiðtÞ ! xiðtÞ þ �GiðtÞ.

Most generally, the ci
n can be time dependent, and the sum in

Eq. (10) is over those times for which the parameter is piecewise
constant. We are most interested in the case where these controls
are constant over the entire time interval of the pulse, since this
provides the simplest parameterization of the pulse.

The results for alternative systems and evolution equations are
similar, with simple, straightforward modifications. There is a con-
trol for each RF channel applied to a given spin species. For the
Liouville equation, the density matrix, q, gives the state of the sys-
tem, and the inner product in this representation is the trace of the
matrix product kyg, with g ¼ �i=�h ½H;q� from the evolution equa-
tion. The inner product for a state jW > : that evolves according
to the Schrödinger equation is a generalization of the dot product
that incorporates vectors with complex components.

3. Results and discussion

OP tailored pulses are presented to demonstrate the capabilities
of the new algorithm. Unless noted otherwise, the cost function
employed is the projection of the transformed magnetization onto
the desired target state: the x-axis for excitation and the �z-axis
for inversion. In all the cases presented, the ‘‘running” cost L ¼ 0,
giving GiðtjÞ ¼ ½MðtjÞ � kðtjÞ �i.

3.1. Fourier series

Some of the earliest pulse optimizations in NMR employed Fou-
rier series representations [6,7,11–13,16–18]. It continues to be a
productive strategy for pulse design in contemporary work [20].
Motivations and insights regarding this approach are discussed in
the examples which follow.

3.1.1. Excitation
As a first example, consider broadband polychromatic pulses

[18] designed using the cosine Fourier series
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x1ðtjÞ ¼
2p
Tp

XN

n¼0

an cosðnxtjÞ ð11Þ

for a single (amplitude-modulated) RF component x1 of pulse
length Tp, with x ¼ 2pDf ; Df ¼ 1=ð2TpÞ, and N ¼ 26. One motiva-
tion for this representation is that it reduces the scale of the optimi-
zation problem considerably. A pulse digitized in Nd ¼ 128
increments (as in [18]) gives an equal number of RF parameters
x1ðtjÞ; fj ¼ 1;2; . . . ;Ndg that would have to be optimized if there
were no further constraints on the pulse shape. Instead, there are
only 27 Fourier coefficients an to optimize. The well-known result
for the small flip angle regime, in which the Fourier Transform of
the pulse gives a good approximation to its frequency response,
suggests another motivation. A pulse with a regular array of fre-
quency elements (constant an) would result in uniform excitation
at these frequencies throughout the desired bandwidth. The failure
of this approximation is sufficiently marginal for a 90� excitation
that the an could be adjusted by hand in a modest number of itera-
tions to achieve good broadband excitation with a linear phase roll
for the resulting pulse PC(53). A subsequent optimization refocused
the linear phase gradient of the pulse by clipping the time-domain
waveform, approximately equivalent to appending a negative 180�
refocusing pulse to the end of the waveform, to produce pulse
PC(53)**.

However, expanding the scale of the problem to further im-
prove performance, for example, by also including Fourier sine
components, or adding a second component x2 to allow phase-
modulation (for example, to generate tolerance to RF inhomogene-
ity), or including relaxation effects (which destroys the relatively
simple relation between Fourier components and frequency
response) make trial-and-error optimization impractical. A more
systematic approach that retains the previously established advan-
tages of representing pulse waveforms by analytic functions is
readily available using optimal control theory.

In the present example, the gradient Gn for adjusting the nth

Fourier coefficient using Eq. (10) becomes

@h
@an
¼
X

j

½MðtjÞ � kðtjÞ �1 cosðnxtjÞ: ð12Þ

Thus, reiterating the general result of Eq. (10) for this specific exam-
ple, the new gradient Gn is effectively a time average of the gradi-
ents for x1ðtjÞ from the standard formulation of the NMR optimal
control problem (Eq. (8) with L ¼ 0), weighted by the cosine term
associated with this coefficient. Since x1 is linear in the parameters
an, step (v) in the basic iteration procedure (Section 2.2) gives

x1ðtjÞ !
2p
Tp

XN

n¼0

½an þ �Gn� cosðnxtjÞ

¼ x1ðtjÞ þ �
2p
Tp

XN

n¼0

Gn cosðnxtjÞ ð13Þ

At each iteration, x1 is therefore changed by � times a gradient term
that is a Fourier cosine series constructed with the coefficients Gn.

As in the original [18], the initial pulse to start the algorithm is
constructed using uniform/equal coefficients. Design criteria for
PC(53)** are Tp ¼ 2 ms; x1=ð2pÞ 6 6:47 kHz, and an excitation
bandwidth of 11.5 kHz. The peak RF limit is enforced by clipping,
as described in [24], and the desired excitation target for all offsets
is the x-axis, for x1 of y-phase. Phase errors with respect to x are
further minimized by weighting the cost function to allow phase
errors in the xz-plane [25]. The optimization is performed over
the desired resonance offset range of 11.5 kHz and nominal peak
RF of 6.47 kHz.

Results in Fig. 1 verify the capabilities of the new algorithm and
show the further slight improvement in pulse performance that
can now easily be obtained for the changes in pulse shape shown
in Fig. 2. The performance of PC(53)** is already very good, and
could clearly have been improved further by hand if there was suf-
ficient need to invest additional time. Both pulses provide seren-
dipitous tolerance to RF inhomogeneity that was not explicitly
included in the optimization. The example is only meant to illus-
trate the enhanced capabilities of a robust and systematic proce-
dure for optimizing pulse performance within the parameters of
the original optimization.

Improved tolerance to RF inhomogeneity is readily obtained by
optimizing over an RF inhomogeneity range of �10%, which is
likely a performance limit for a solely amplitude-modulated pulse.
Results in Fig. 3 (left panels) show practically uniform performance
over the desired chemical-shift and RF tolerance ranges. Greater RF
compensation requires adding a pulse component x2 to provide
the necessary phase-modulation. We also expand each RF compo-
nent in terms of cosine and sine series in this case, with N still
equal to 26. Applying Eq. (10) to obtain the gradient for the Fourier
sine coefficients replaces the cosine term in Eq. (12) by a sine for
these new coefficients. Optimizing for a range of �30% tolerance
to RF inhomogeneity/miscalibration gives the outstanding perfor-
mance shown in the right panels of Fig. 3.

Although the complexity of the performance criteria has been
progressively increased in this sequence of examples, eventually
exceeding the capabilities of previous optimization strategies, the
new algorithm provides a means to efficiently utilize the original
insight that an outstanding pulse can be constructed using a rela-
tively small set of 27 frequency components (plus the correspond-
ing negative frequencies). We were also able to enforce the desired
RF limits on the pulse by the clipping algorithm established previ-
ously [24]. We emphasize, however, that the optimized Fourier
coefficients obtained using the OP algorithm do not produce the
clipped waveform directly. The pulse constructed from these coef-
ficients exceeds the RF limit, and in fact performs very poorly until
clipped at the level for which it was designed.
3.1.2. Inversion
For larger flip angles, there is little correspondence between the

Fourier transform of a pulse and its frequency response. A more
rigorous theoretical framework that also provides insight into spin
response to pulse Fourier components is provided by the Floquet
formalism. It has been adapted [7,6,16] to provide a systematic
algorithm for the optimization of Fourier coefficients in pulse de-
sign. This methodology is computationally demanding, requiring
truncations of the ideal (infinite) Floquet matrix, followed by diag-
onalization, a perturbation-theoretical approach, and minimization
of defined parameters to check for proper convergence. The order
of the Floquet truncation represents a compromise between com-
putationally manageable matrix dimensions and the accuracy of
the derived pulse or propagator.

Since the efficient OP algorithm optimizes the Fourier coeffi-
cients directly, with no appreciable limit on the number of compo-
nents for practical applications, it can either augment or supplant
procedures within the Floquet methodology as needed or required.
In addition, as noted in the previous example, a linearly polarized
pulse (amplitude-modulation) can be adjusted to give modest
compensation for RF inhomogeneity. Such constraints, which can
be problematic for other procedures, are easily incorporated in
the OP algorithm. We chose a value of �5% RF tolerance for the
optimization, dictated by the inversion performance of the Floquet
pulse. Figure 4 shows the performance enhancement available for
the small changes in Fourier coefficients listed in Table 1 for OP in
comparison with the Floquet inversion pulse given in Table 1 of
Ref. [16]. The OP pulse is clipped to maintain the same peak RF
as the Floquet pulse.
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PC(53)** (dotted line) and the new OP algorithm (solid line). Both pulses are limited
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Fig. 1. Theoretical performance of pulses derived using the PC(53)** protocol [18] and the OP algorithm. The magnitude of the x-component and phase of the excited
magnetization are plotted as a function of resonance offset and peak RF field of the pulse. Both of the amplitude-modulated pulses are represented as a 27-coefficient cosine
Fourier series. Although they are optimized only for a nominal peak RF calibration of 6.47 kHz, they exhibit reasonable tolerance to �10% variations in calibration or
inhomogeneity. The comparison is only meant to confirm the validity of the new algorithm, which provides a systematic procedure for optimizing pulses expressed as
parameterized functions.
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3.2. Adiabatic pulses

The OP algorithm is not restricted to Fourier series representa-
tions of pulses. Any function parameterized in the form given in Eq.
(9) can be applied to pulse representation. To this end, we consider
an application to adiabatic pulses.
It has been noted [30] that the adiabatic tanh = tan [31] (ampli-
tude/frequency-modulation) pulse can achieve short, high power
broadband inversion that approaches the capabilities of BIP pulses
[32]. The authors [30] suggested that optimizing the parameters
defining the adiabatic pulse shape might provide additional perfor-
mance enhancement, allowing BIP-like performance for a simple
functional shape. The OP algorithm provides a simple procedure
for investigating this possibility.

The tanh = tan amplitude- and frequency-modulations can be
represented as

x1 ¼ xmax tanh½fð1� 2jtj=TpÞ� ð14Þ
x3 ¼ xs tan½jð2t=TpÞ� ð15Þ

for �Tp=2 6 t 6 Tp=2. Compared with the notation of Ref. [30], the
maximum RF amplitude in units rad/sec is xmax ¼ 2pRFmax, with
RFmax in Hz. The frequency sweep rate (same units) is xs ¼ 2p
ðbwdth=2Þ= tanj for bwdth in Hz.

The parameters f and j are used to adjust the shape of the
pulse, and have typically been assigned values tanj ¼ 20 ¼ f. Val-
ues assigned to RFmax; bwdth, and Tp then determine the perfor-
mance of the pulse. Universal equations have been derived for
assigning the proper values to achieve a desired set of performance
criteria in [30]. To investigate the possibility of achieving inversion
performance equal to BIP, one must instead match RFmax and Tp to
the corresponding BIP pulse and then find the values for f;j, and
xs that optimize performance. This three-parameter optimization
is simple and efficient when the OP algorithm is used to obtain
the gradients leading to improved performance for initial values
of these parameters.

The second term of the sum in Eq. (10) gives, for each
parameter,
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@x1

@f
¼ xmaxð1� 2jtj=TpÞ sec h2½fð1� 2jtj=TpÞ � ð16Þ

@x3

@j
¼ xsð2t=TpÞ sec2½jð2t=TpÞ � ð17Þ

@x3

@xs
¼ tan½jð2t=TpÞ � ð18Þ
The gradient in each case is the product of the corresponding term
above and the factor of Eq. (8), summed over the increments tj com-
prising the digitized pulse.

The procedure was applied using design criteria matching BIP-
1382-250-15, with Tp ¼ 192 ls, inversion bandwidth 50 kHz,
RFmax ¼ 20 kHz, and tolerance to RF inhomogeneity of �15%.



Table 1
Fourier cosine coefficients for the inversion pulses of Fig. 4

a0 a1 a2 a3 a4 a5 a6 a7

Floquet 0.5 �1.0 1.0 �1.03 1.07 �1.67 2.63 �1.42
OP 0.516 �1.0334 1.044 �1.056 1.077 �1.577 2.929 �2.119
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Optimal performance was obtained for f ¼ 13:1; tanj ¼ 1:48, and
bwdth ¼ 67:3 kHz. The performance shown in Fig. 5 falls short of
BIP performance, but is better than the single-parameter optimiza-
tion of j performed by trial-and-error in [30], which was combined
with insights on the proper setting of the other parameters
(tanj ¼ 1:34; f ¼ 20; bwdth ¼ 241 kHz, and RFmax ¼ 21:44 kHz).
We also expanded the scope of the optimization by adjusting the
parameters at specified times during the pulse. The effect on the
gradient calculation is to sum only over those times for which
the parameter is (piecewise) constant. We did not find it possible
to fully match BIP performance using a simple adiabatic pulse
shape, even using adjustable parameters at each time step. None-
theless, approximately equal performance is obtained with a very
simple optimization requiring little operator intervention, in con-
trast to the detailed strategies developed for the BIP optimization
process. In addition, the adiabatic pulse performs significantly bet-
ter than the parameterization provided as an approximation for BIP
in Table 1 of Ref. [32].
3.3. Chebyshev polynomials

BIP utilized the insight that chirp pulses give reasonable inver-
sion performance, but considered whether the extreme tolerance
to RF inhomogeneity they provide might be sacrificed in favor of
shorter pulse length and improved inversion by modifying their
linear frequency sweep (or quadratic phase). A difficulty, noted
in [32], is that a truncated Fourier series is a poor choice for a par-
abolic phase profile. It requires far too many terms for a reasonably
faithful representation of a quadratic, especially for optimization
methods that require a restricted parameter space. A more general
power series expansion was also problematic for the same reason,
since it was not known how many terms the optimal frequency
sweep or phase profiles would need.
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The OP algorithm is not so limited by the dimensions of the
parameter space, and it is also capable of tailoring the pulse repre-
sentation to the demands of the particular problem. We therefore
consider broadband inversion pulses expanded in a Chebyshev ser-
ies. The Chebyshev polynomial of degree n; TnðxÞ is of nth order
with only odd(even) powers of x for odd(even) values of n. A func-
tion approximated as a truncated Chebyshev series has the small-
est maximum deviation from the true function among all
polynomials of the same degree [33]. Hence, it distributes the trun-
cation error evenly throughout the domain of the function, and
provides a means for representing a pulse with the minimum num-
ber of coefficients.

BIP is already a carefully and thoroughly optimized solution, so
the purpose of the present example is to illustrate how the OP
algorithm can greatly simplify optimizations while still accommo-
dating any of the insights or specialized strategies of a given proce-
dure. We thus start the algorithm with a linear frequency sweep
x3 ¼ a1T1ðtÞ and let the algorithm modify the Chebyshev coeffi-
cients that were initially zero to improve the performance of

x3ðtjÞ ¼
X
n odd

anTnðtjÞ ð19Þ

According to Eq. (10), the gradient towards improvement in an is

@h
@an
¼
X

j

½MðtjÞ � kðtjÞ �3 TnðtjÞ ð20Þ

Outstanding inversion performance was quickly found for 24 odd
Chebyshev coefficients, so the order of the expansion was reduced
to 12 odd coefficients to obtain the performance shown in Fig. 6
for both pulses. Fewer coefficients resulted in significantly poorer
inversion performance.

The pulse derived using the basic OP algorithm achieves a pass-
able match to BIP performance. If further performance adjustments
are desired, fine-tuning strategies detailed in [32] can be applied
while taking advantage of OP efficiency for any optimizations.
We also note that the frequency sweep plotted in Fig. 7 is consid-
erably more linear than the profile illustrated in Fig. 4 of [32]. The
OP algorithm has thus found a different solution than BIP with
comparable performance, indicating possibly a multitude of useful
pulses and illustrating the difficulty of zeroing in on a single
t (kHz)
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mplitude/frequency-modulation [31] implemented with optimized parameters
the tanh = tan pulse achieves comparable performance to BIP at the 95% inversion
ulse shape, even when all three parameters were allowed to be time dependent and
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pulses, generated automatically using a linear frequency sweep as input to the OP algorithm, achieve comparable performance to BIP with increasing components. Differences
between BIP and the 24-component pulse are only marginally better or worse at various offsets and RF calibrations. The OP algorithm does not preclude any of the fine-tuning
strategies developed for BIP if further performance adjustments are desired.

0 20 40 60 80 100 120 140 160 180
−600

−400

−200

0

200

400

600

Fr
eq

ue
nc

y 
M

od
ul

at
io

n 
(k

H
z)

Time (µs)
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globally optimized pulse. OP thus represents a useful addition to
the arsenal of tools necessary for flexible and efficient pulse
engineering.
4. Conclusion

We have derived an optimal control procedure for optimizing
parameters of pulses represented as analytic functions. The result-
ing OP algorithm retains all the advantages of functional represen-
tation of pulse waveforms while providing access to the broad
range of problems which require the powerful and efficient capa-
bilities of optimal control theory. Examples were provided to dem-
onstrate how OP both complements and enhances existing
optimization strategies to simplify the process of pulse design.
We anticipate implications beyond the scope of the present article
for optimal control in general.
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[18] Ē. Kupče, R. Freeman, Wideband excitation with polychromatic pulses, J. Magn.
Reson. Series A 108 (1994) 268–273.

[19] D. Rosenfeld, S.L. Panfil, Y. Zur, Optimization of adiabatic selective pulses,
J. Magn. Reson. 126 (1997) 221–228.

[20] M. Veshtort, R.G. Griffin, High-performance selective excitation pulses for
solid- and liquid-state NMR spectroscopy, Chem. Phys. Chem. 5 (2004)
834–850, doi:10.1002/cphc.20040001.

[21] K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of
broadband excitation and inversion: II. Rf-power optimized pulses, J. Magn.
Reson. 194 (2008) 58–66.

[22] T.E. Skinner, K. Kobzar, B. Luy, M.R. Bendall, N. Khaneja, S.J. Glaser, Optimal
control design of constant amplitude phase-modulated pulses: Application to
calibration-free broadband excitation, J. Magn. Reson. 179 (2006) 241–249.

[23] T.E. Skinner, T.O. Reiss, B. Luy, N. Khaneja, S.J. Glaser, Application of optimal
control theory to the design of broadband excitation pulses for high resolution
NMR, J. Magn. Reson. 163 (2003) 8–15.
[24] T.E. Skinner, T.O. Reiss, B. Luy, N. Khaneja, S.J. Glaser, Reducing the duration of
broadband excitation pulses using optimal control with limited RF amplitude,
J. Magn. Reson. 167 (2004) 68–74.

[25] T.E. Skinner, T.O. Reiss, B. Luy, N. Khaneja, S.J. Glaser, Tailoring the optimal
control cost function to a desired output: application to minimizing phase
errors in short broadband excitation pulses, J. Magn. Reson. 172 (2005) 17–23.

[26] N.I. Gershenzon, K. Kobzar, B. Luy, S.J. Glaser, T.E. Skinner, Optimal control
design of excitation pulses that accommodate relaxation, J. Magn. Reson. 188
(2007) 330–336.

[27] N.I. Gershenzon, T.E. Skinner, B. Brutscher, N. Khaneja, M. Nimbalkar, B. Luy,
S.J. Glaser, Linear phase slope in pulse design: application to coherence
transfer, J. Magn. Reson. 192 (2008) 235–243.

[28] E. Pinch, Optimal Control and the Calculus of Variations, Oxford University
Press, Oxford, 1993.

[29] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal
control of coupled spin dynamics: design of NMR pulse sequences by gradient
ascent algorithms, J. Magn. Reson. 172 (2005) 296–305.

[30] Y.A. Tesiram, M.R. Bendall, Universal equations for linear adiabatic pulses and
characterization of partial adiabaticity, J. Magn. Reson. 156 (2002) 26–40.

[31] M. Garwood, Y. Ke, Symmetric pulses to induce arbitrary flip angles with
compensation for RF inhomogeneity and resonance offsets, J. Magn. Reson. 94
(1991) 511–525.

[32] M.A. Smith, H. Hu, A.J. Shaka, Improved broadband inversion performance for
NMR in liquids, J. Magn. Reson. 151 (2001) 269–283.

[33] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in
C, Cambridge University Press, New York, NY, 1988.

http://dx.doi.org/10.1002/cphc.20040001

	Optimal control design of pulse shapes as analytic functions
	Introduction
	Optimal control algorithm
	Standard formulation
	The OP variation

	Results and discussion
	Fourier series
	Excitation
	Inversion

	Adiabatic pulses
	Chebyshev polynomials

	Conclusion
	Acknowledgments
	References


